Planar Symmetry

The fascinating and hidden beauty
of planar symmetries.
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In this pamphlet we shall only touch on the particular aspects of planar symmetry
associated with rectangular mats having a rectangular central hole. It might well
be a subject to which nobody has even bothered giving any attention to. Most likely such
mats are considered too mundane for any form of serious investigative considerations
apart from some rather more or less remotely trivial connections by Kronecker (1823-

1891)T. We did spend some time on regular rectangular mats in The Braider,
hence the reader be referred to that publication where we showed how they were very
closely associated with regular cylindrical braids. We clearly showed in The Braider
that they were much more complicated than regular cylindrical braids. Naturally
it should be obvious to look at regular rectangular mats with a centrally placed
rectangular hole. This might well at first sight appear not to offer a great deal of
new territory to explore, but it will soon become clear that a whole new world opens
up. Soon it will be discovered that the apparent regular flat braid (weave) consists of
interwoven single string flat braids and that these single string components show an
interesting variety of symmetries and furthermore that only restricted consistencies
do exist. Soon it will be discovered that a square regular mat with a centrally placed
square hole, the simplest of the various possibilities, requires n strings when the
outside frame contains n; by n; bights and the hole frame contains ny by ng bights.
The hole frame is empty, hence has no braid within its inside boundaries. Only the
area between the outside frame and hole frame is totally covered by the braid. It
will also soon be discovered that the value of n = n; — ng. As we know the square
mat without the square hole requires n; strings to fill it, and the hole frame would
require ny strings for a braid to fill it. Sofar it seems all to be very simple, but don’t
get fooled by trying to predict the results when the outside frame has n,;/n,, bights
and the hole frame has np;/nn, bights.

There are at least two ways to carry our investigations further. An obvious one is
by calculating the sequential braiding steps consisting of ‘full’ and ‘part’ half-cycles, the
straight line segments between consecutive bights. This method is quite cumbersome to
say the least. The alternative method is to use a suitable computer drawing program.
Although that method requires a lot of time with its very large number of subsequent
print-outs (for record keeping at least), it is nevertheless to be preferred. Very soon
it should become clear that single string solutions do exist and also soon it will be
discovered that we have entered the world of symmetries. In our earlier Pamphlets we
have seen a litle glimps of symmetries as exhibited for example by the RK'T.

A typical, but rather general example of the braids we intend to deal with is presented
in Fig.1, where n,;/n.. = 34/33 and npi/np, = 17/18. It looks a simple and very
regular braid. How many strings are there required is the obvious question and
what do the comprising component(s) look like?? It appears that nobody has
ever wondered about those obvious questions. Too mundane?? Soon we will show how
totally misplaced such an attitude is. The follow up question is: Is there a consistent
pattern, or in other words a consistent mathematical formula which will give a definite

f String-polygons for flat braids, without holes, have been studied as paths of billiard
balls on a table with reflecting boundaries, known as Konig-Szlics polygons, and the .
more closely related article ‘On sequences of compound braids——-Some properties and
problems’ by A.G.Schaake, presented at the time by John Turner to the Fibonacci
Association in mid. 1994.



Fig. 1.



answer to the questions posed above??

Obviously the questions posed are simple and so is the braid, at least by the looks
of it. It would only be fair to say that nobody could possibly be expected to give the
correct answer! Of course, we could go a step further after telling an enquirer that this
particular braid requires three single string components and then ask if any do have or
do not have a symmetry. All simple questions looking for an answer, Such questions are
surely the beginning of a more comprehensive and may be quite lengthy exploration,
For the moment it might pay to let the reader wonder.

After some contemplation it should at least become clear that we understand virtu-
ally nothing even about the most simple and well presented phenomena in the Universe.
Slowly it should become clear that symmetry is a universal and hence a govern, but
in generally a well hidden property in the Universe.

The overall braid of a Regular rectangular braid with a central rectangular hole can
be designated by ngi/nes X npi/nne. In particular the ones where nyi = noo = n1 and
nni = Nhe = nz where as mentioned earlier the number of single string components
is equal to n; — ng, we have a very simple relationship indeed! It tells us, however,
absolutely nothing about their apparently inherent internal properties. In fact, initially
it might well appear that there is nothing of any interest to be noted other than at best
some rather simple symmetry and even that might well be overlooked.

Let np; = ngp = 1 = 17 and ny; = npe = na = 6. Tis braid can thus be designated
by 17/17 x 6/6. From the above we already know that this braid requires 17 — 6 =
11 strings. Let’s see what the eleven components look like. They are presented in
Figs.2 — 13, Fig. 2 shows the overall braid wih its eleven components, then follow the
eleven diagrams of each component, hence the Figs. 3 — 13. The first component Fig. 3
is totally symmetric. The following four (Figs.4 — 7) are also very simple ones. Not
only has each component a symmetry with itself, but also the component of Fig. 4 has
a symmetry with the component of Fig. 5 and the component of Fig. 6 has a symmetry
with the component of Fig. 7. Furtheron the component of Fig. 8 has a symmetry with
the component of Fig.9, the component of Fig. 10 with the component of Fig. 11 and
the component of Fig.12 with the component of Fig.13. The symmetries are slowly
getting more complicated, an inherent but apparently a natural process.
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Fig. 4.
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Fig. 12.
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Fig. 13.

When we decrease the hole size from 6/6 to 6/4 while leaving the outside frame at
17/17, the initial seven components are similar to the initial five components of the
17/17 x 6/6 braid. The $otal number of components in the 17/17 x 6/4 braid decreases
to nine components, hence a decrease of two components from the 17/17 x 6/6 braid to
the 17/17 x 6/4 braid (11 — 9 = 2). The last two components of the 17/17 x 6/4 braid
have an identical symmetry.

By decreasing the hole further to 6/2, the braid 17/17 x 6/2 has eleven components,
hence the number of components is rising again. The initial nine components are very
simmilar to the initial seven components in the 17/17 x 6/4 braid and the initial five
components of the 17/17 x 6/6 braid.

By decreasing the hole still further to 6/0, the braid 17/17 x 6/0 has seventeen com-
ponents. The initial eleven components are very simmilar to the initial nine components .
in the 17/17 x 6/2 braid, the initial seven components in the 17/17 x 6/4 braid and, the
initial five components in the 17/17 x 6/6 braid. Then there are a further six somewhat
similar components which gives us the total of seventeen components.






Fig. 17.

Fig.19.
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Fig. 20.

Fig. 21.

Fig. 22.




Fig, 23.

Fig. 24.

Fig. 25.
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Fig. 26.

Fig. 27.

Fig. 28,
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Note especially that in the braid 17/17 x 6/0 we came back to eleven components
and that 17 = 11 4 6, furthermore recall from pg.1 that 11 = ny —ng = 17 -6, All
simple, easy and apparently natural relationships! We see here a somewhat similar sort
of behaviour with the number of components as that of the RKT with natural numbers
(refer to Pamphlet No. 20 pg. 3) — in our case here we start with the component numbers
of the regular square flat braids n;/n; = 17/17 and np /ng = 6/6 hence with 17 and
with 6 which leads to the component numbers of the braid 17/17 x 6/6 of 17—6 = 11,
flinally to finish up with the number of components of the braid 17/17 x 6/0 with
(17 — 6) + 6 = 17, an interesting and most likely unexpected result.

The first component in Fig. 28 of the 17/17 x 8/8 braid in Fig.27, consisting of
17 — 8 = § components, is again totally symmetric. We do not have components
similar to the four in Figs. 4 — 7. The eight components following this totally symmetric
component in Fig. 28, are again somewhat very similar.

"The braid 17/17 x 8/6 in Fig.29 consists of five components. The first three are
again very similar to the ones in Figs.3—7. Then follow the two components in Figs. 30
and 31.

Fig. 30.
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Fig. 31.
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Fig. 32,

Fig. 33.
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Fig. 35.
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The braid 17/17 x 8/4 in Fig. 32 consists of nine components. The first five are again
very similar to the ones in Figs. 3 — 7. Then follow the four components in Figs. 33 — 36.

The braid 17/17 x 8/2 in Fig. 37 consists also of nine components. The first seven
are again very similar to the ones in Figs.3 — 7. Then follow the two components in
Figs. 38 and 39.

With the braid 17/17 x 8/0 we come back to (17 — 8) 4 8 = 17 components.

In the braid 17/17 x 10/10 depicted in Fig. 40, its first component is totally sym-
metric, but as depicted in Fig.41 quite different to the first component in the braid
17/17 x 6/6, hence quite different to the component in Fig, 3. Of its seven components
(17 — 10 = 7), depicted in Figs.42 — 47 component two is like component three while
component four is like component five and component six is like component seven.

The braid 17/17 x 10/8 in Fig. 48 consists of a single component as does the braid
17/17 x 8/10.

The braid 17/17 x 10/6 in Fig. 49 consists of the three components depicted in the
Figs. 50 — 52.

Fig. 40.

Fig. 41.
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Fig. 48.

Fig. 49.

Fig. 50.
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Fig. 51.

Fig. 52.
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Fig. 54.

Fig. 56.
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Fig. 58.
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Fig. 59.
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Fig. 61.

In the depicted diagrams we have chosen the start and end of the component, but
obviously the start and end of a component can be placed at any point of the compoenent
concerned. This must be clearly kept in mind, hence for example the second component
in the braid 13/11x 3/5, Fig. 64 of the Figs. 62064 is the same as the second component,
ig. 67 of the Figs. 65 — 67.

Although only a few braids with their components have been shown, it should be clear
that a repeat in pattern is obviously there, but is more complicated. Since the outside
frame has n,;/n.e bights while the inside frame has np;/ny, bights we have with
odd and even bight numbers 4 X 2 = 8 braid-type combinations of n,i/nes X Thi/Mho
to start with.

As mentioned on pg. 1 there are single-component members of these braids, just as
there are two-component members, three-component members, four-component mem-
bers and n-component members, where n is a natural number, of these braids. Single-
. component members, for example, are 27/29 x 18/18, 13/15 x 8/8, 25/27 x 18/18,
26/27 x 17/18, 28/26 x 17/11.



Fig. 62,

Fig. 63.

Fig. 64,
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Fig. 65.

Fig. 66.

Fig. 67.




